microchip-aiAI & Machine Learning (Optional)

AI & Machine Learning Mastery Roadmap

This detailed roadmap will take you from beginner to expert in AI and Machine Learning, covering mathematical foundations, Python libraries, supervised and unsupervised learning, deep learning, NLP, computer vision, and real-world projects.


Phase 1: Fundamentals of AI & Machine Learning

βœ… Mathematical Foundations

  • Linear Algebra (Vectors, Matrices, Eigenvalues)

  • Probability & Statistics (Bayes’ Theorem, Distributions)

  • Calculus (Derivatives, Gradients, Optimization)

βœ… Python for Machine Learning

  • NumPy & Pandas (Data Manipulation, Arrays)

  • Matplotlib & Seaborn (Data Visualization)

  • Scikit-learn (Basic ML Models)

πŸ“Œ Mini Projects:

  • Exploratory Data Analysis (EDA) on a Dataset

  • Simple Regression Model (Predict House Prices)


Phase 2: Supervised & Unsupervised Learning

βœ… Supervised Learning

  • Linear & Logistic Regression

  • Decision Trees & Random Forests

  • Support Vector Machines (SVM)

  • Gradient Boosting (XGBoost, LightGBM, CatBoost)

βœ… Unsupervised Learning

  • Clustering (K-Means, DBSCAN, Hierarchical Clustering)

  • Dimensionality Reduction (PCA, t-SNE, LDA)

  • Anomaly Detection & Outlier Detection

πŸ“Œ Mini Projects:

  • Customer Segmentation Using Clustering

  • Spam Email Classification with Logistic Regression


Phase 3: Deep Learning & Neural Networks

βœ… Neural Networks & Deep Learning

  • Introduction to Neural Networks (Perceptron, MLPs)

  • Activation Functions (ReLU, Sigmoid, Softmax)

  • Backpropagation & Optimization (SGD, Adam, RMSProp)

βœ… Deep Learning Frameworks

  • TensorFlow & Keras (Model Building, Training, Evaluation)

  • PyTorch (Tensors, Autograd, Dynamic Computation Graphs)

πŸ“Œ Mini Projects:

  • Digit Recognition Using CNN (MNIST Dataset)

  • Sentiment Analysis Using LSTMs


Phase 4: Natural Language Processing (NLP)

βœ… Text Processing & Feature Engineering

  • Tokenization, Stemming, Lemmatization

  • Bag-of-Words (BoW), TF-IDF, Word Embeddings

βœ… Advanced NLP Models

  • Recurrent Neural Networks (RNN, LSTM, GRU)

  • Transformers (BERT, GPT, T5)

πŸ“Œ Mini Projects:

  • Chatbot Development (Intent Recognition & Response Generation)

  • Text Summarization Using Transformers


Phase 5: Computer Vision & Image Processing

βœ… Basic Image Processing

  • OpenCV (Edge Detection, Filters, Contours)

  • Image Augmentation & Feature Extraction

βœ… Deep Learning for Computer Vision

  • Convolutional Neural Networks (CNNs)

  • Object Detection (YOLO, SSD, Faster R-CNN)

  • Image Segmentation (U-Net, Mask R-CNN)

πŸ“Œ Mini Projects:

  • Face Detection & Recognition System

  • Object Detection for Traffic Surveillance


Phase 6: Reinforcement Learning & AI Applications

βœ… Reinforcement Learning (RL)

  • Markov Decision Process (MDP)

  • Q-Learning & Deep Q Networks (DQN)

  • Policy Gradient Methods

βœ… AI Applications & Advanced Topics

  • Generative AI (GANs, VAEs)

  • AI Ethics & Explainability (SHAP, LIME)

πŸ“Œ Mini Projects:

  • AI Agent Playing Games (OpenAI Gym)

  • Image Generation Using GANs


Phase 7: AI Deployment & Model Optimization

βœ… ML Model Deployment

  • Flask & FastAPI for Model Serving

  • Deploying on AWS, GCP, Heroku

βœ… MLOps & Model Optimization

  • Model Monitoring & AutoML

  • Hyperparameter Tuning (Optuna, Grid Search)

πŸ“Œ Mini Projects:

  • Deploy a Face Recognition Model on AWS Lambda

  • Automate ML Pipelines with Apache Airflow


Final Step: Real-World Practice & Skill Testing

πŸ”₯ Platforms to Test & Improve Skills:

πŸš€ By mastering this roadmap, you’ll be able to: βœ… Build & Deploy AI-Powered Applications βœ… Master NLP, Computer Vision & Reinforcement Learning βœ… Optimize & Automate AI Workflows (MLOps)

πŸ”₯ Start your AI journey today!

Last updated